
On Achieving Fairness in the

Joint Allocation of

Processing and Bandwidth Resources:

Principles and Algorithms

Yunkai Zhou
and

Harish Sethu

Technical Report DU-CS-03-02
Department of Computer Science

Drexel University
Philadelphia, PA 19104

July 2003

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2003 2. REPORT TYPE

3. DATES COVERED
 00-07-2003 to 00-07-2003

4. TITLE AND SUBTITLE
On Achieving Fairness in the Joint Allocation of Processing and
Bandwidth Resources: Principles and Algorithms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science,Drexel
University,Philadelphia,PA,19104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1

On Achieving Fairness in the Joint Allocation of
Processing and Bandwidth Resources: Principles

and Algorithms
Yunkai Zhou and Harish Sethu

Abstract— The problem of achieving fairness in the allocation
of the bandwidth resource on a link shared by multiple flows of
traffic has been extensively researched over the last decade. How-
ever, with the increasing pervasiveness of optical networking and
the occasional trend toward using over-provisioning as the solu-
tion to bandwidth congestion, a router’s processor also becomes
a critical resource to which, ideally speaking, all competing flows
should have fair access. For example, if the network is not fair
in allocating processing resources, denial of service attacks based
on an excessive use of the router processor (such as by using un-
necessary optional headers) become possible. In this report, we
investigate the issue of achieving fairness in the joint allocation of
the processing and bandwidth resources. We first present a simple
but powerful general principle for defining fairness in such sys-
tems based on any of the classic notions of fairness such as max-
min fairness, proportional fairness and utility max-min fairness
defined for a single resource. We apply our principle to a system
with a shared processor and a shared link with max-min fairness
as the desired goal. We then propose a practical and provably fair
packet-by-packet algorithm for the joint allocation of processing
and bandwidth resources. We demonstrate the fairness achieved
by our algorithm through simulation results using both synthetic
and real gateway traffic traces. The principles and the algorithm
detailed in this report may also be applied in the allocation of other
kinds of resources such as power, a critical resource in mobile sys-
tems.

Index Terms—Fairness, resource allocation, processor sharing,
max-min.

I. I NTRODUCTION

A. Introduction and Motivation

Fairness in the allocation of resources in a network shared
amongst multiple users is not only an intuitively desirable goal
but also one with many practical benefits. Fairness in traf-
fic management can improve flow and user isolation, offer
a more predictable performance, and eliminate certain kinds
of bottlenecks. In addition, strategies and algorithms for fair
management of network traffic can serve as a critical compo-
nent of Quality-of-Service (QoS) mechanisms to achieve cer-
tain guaranteed services such as delay bounds and minimum
bandwidths. Fair resource allocation strategies can also help
in countering certain kinds of denial-of-service (DoS) attacks
[1]. Various formal notions of fairness have been proposed in
the literature to precisely define what is fair in the allocation
of a resource amongst competing flows. These include, among

This work was supported in part by NSF CAREER Award CCR-9984161 and
U.S. Air Force Contract F30602-00-2-0501. A preliminary version of this re-
search appeared inProc. Int’l Workshop on Quality of Service (IWQoS), Mon-
terey, CA, June 2003.

others, max-min fairness [2–5], proportional fairness [6], and
utility max-min fairness [7].

Based on these notions of fairness—most commonly, based
on the notion of max-min fairness—much research over the last
decade or two has focused on the allocation of the bandwidth
resource on a link [3,4,8–12]. It has also been shown that con-
cepts and algorithms for achieving fairness in the allocation of
a single resource can be extended to the case with multiple re-
sourcesof the same kind[13]. However, as flows of traffic
traverse a computer network, they share many different kinds
of resources such as link bandwidth, buffer space, time on the
router processors and also electrical power, a critical resource
in mobile systems. The ultimate goal, therefore, should be the
overall fairness in thejoint allocation of all resources shared by
the flows of traffic and not just one specific kind of resource
such as the link bandwidth. For example, if the network is not
fair in allocating processing resources, DoS attacks based on an
excessive use of the router processor (such as by using unnec-
essary optional headers) become possible.

The significance of considering the fair allocation of more
than just the link bandwidth is increasingly becoming apparent
today, since the link bandwidth is often not the only critical re-
source. With the current pervasiveness of optical networking in
the Internet backbone, and with the occasional trend toward us-
ing over-provisioning as the solution to congestion in the edge
networks, a router’s processor is often also a critical resource to
which, ideally speaking, all competing flows should have fair
access. Given the fact that processing requirements of differ-
ent packets vary widely, the issue of fairness in the allocation
of the processing resources gains significance. In addition, be-
sides the fact that packet lengths can vary widely, the presence
of optional headers and the various kinds of control informa-
tion carried by packets create a wide variation in the ratio of a
packet’s demand for bandwidth and its demand for processing
cycles. Thus, packets of the same length cannot be guaranteed
to have similar requirements for the processing resources on a
router. In fact, the processing delay plotted as a function of the
packet length shows that the processing requirements of pack-
ets vary across a wide range even for packets of the same length
[14]. Thus, one cannot achieve overall fairness merely with the
fair allocation of link bandwidth alone, or merely through the
fair allocation of the processing resource alone, since different
flows—and different packets within the same flow—may have
very different demands for these two kinds of resources. All
of this begs the question this report seeks to address: how does

2

one achieve fairness in thejoint allocation of the processing and
bandwidth resources?

The need for fairness in the joint allocation of multiple het-
erogeneous resources has also been recognized in other con-
texts besides the one discussed here. For example, it has been
recognized that fair allocation of both the channel bandwidth
and the power consumed needs to be achieved simultaneously
in mobile networks where power and bandwidth are both criti-
cally important and scarce resources [15]. However, a rigorous
theoretical framework that may be universally employed as a
guide in the design of practical algorithmic strategies for the
joint allocation of such heterogeneous sets of resources does
not exist.

In this technical report, we investigate the issue of fairness
in such systems and develop a general principle that forms the
foundation for the design of practical and fair strategies for use
in routers. We also present an evaluation of the practical strate-
gies proposed in this report using both synthetic and real gate-
way traffic traces.

B. Contributions

In the joint allocation of the processing and bandwidth re-
sources, if a certain resource is never the bottleneck, then the
fair allocation strategy degenerates to the fair allocation of just
the other resource. For example, if the available bandwidth is
large enough that no flow experiences congestion due to lack of
bandwidth alone, one only needs to worry about the allocation
of the processing resource. Fair allocation of a single bottle-
neck resource has been studied extensively in the literature and
has led to a large number of practical algorithms that are in use
today in Internet routers, operating systems, and transport-level
protocols. This report, on the other hand, answers the question
of what is a fair allocation when more than one resource is con-
gested and extends the notions of fairness applied to a single
resource to systems with multiple heterogeneous resources.

We define anessentialresource as one for which a flow’s de-
mand does not reduce with an increase in the allocation of other
resources to the flow. A number of resources such as the link
bandwidth, processor or power, in most contexts, are essential
resources. On the other hand, buffer resources in a network are
often non-essential resources as per the above definition; for
example, in a system with a buffer and a link, a flow uses the
buffer only if the link resource is currently unavailable to it, and
thus a flow’s demand for the buffer resource reduces as more of
the link bandwidth is allocated to it. Note that a non-essential
resource does not necessarily mean that it is not useful. In the
system model used in this report, we assume that the flows are
in competition for resources that are all essential. The issue of
achieving fairness in a system where flows have to compete for
a non-essential resource such as a buffer entails a different set
of challenges than those considered here, and is addressed in
some other recent works such as [16].

We define a pair of resources asrelated to each other if a
flow’s demand for one resource uniquely determines its demand
for the other resource. Resources in a set are said to berelated
if each resource is related to every other resource in the set.
Resources in real scenarios are almost always related since the
demands of a flow for different individual resources are often

related to each other. For example, since each packet is asso-
ciated with certain processing and bandwidth requirements, a
specific increase in a flow’s demand for link bandwidth is typ-
ically associated with a specific increase in its demand for the
processing resource. A simpler example, involving multiple re-
sources of the same kind, is a tandem network with multiple
links where the demand of a flow for bandwidth is the same on
all the links. In the system model used in this report, we as-
sume multiple resources that are related, although we make no
assumptions on the specific nature of the relationship between
a flow’s demand for different resources. The existence of a re-
lationship between the demands of a flow for various resources
calls for thejoint allocation of these resources, as opposed to an
independent and separate allocation of the resources.

The primary contribution of this report is a theoretical frame-
work based on which one can define fairness in the joint alloca-
tion of multiple heterogeneous resources that are essential and
related. We make no assumptions on the notion of fairness; in
fact, our framework may be applied to any of several notions
of fairness such as max-min fairness, proportional fairness or
utility max-min. Through illustrative examples, we claim that,
at each instant of time, it is the maximum of a flow’s normal-
ized demand for the various resources that should count in the
decisions made by a fair resource allocation algorithm. We then
develop the fundamental principles of fairness for systems with
multiple essential and related heterogeneous resources, and pro-
pose thePrinciple of Fair Essential Resource Allocationor the
FERA principle, expressed within a rigorous theoretical frame-
work. We also prove that, under certain conditions, there exists
a unique, fair, and work-conserving resource allocation policy
which satisfies the FERA principle.

Given the FERA principle, we proceed to apply it to a system
with a shared processor and a shared link, using max-min fair-
ness as the notion of fairness. We propose an ideally fair pol-
icy, called theFluid-flow Processor and Link Sharing (FPLS)
algorithm, for the joint allocation of processing and bandwidth
resources. We then develop a practical andprovablyfair packet-
by-packet approximation of the FPLS algorithm, calledPacket-
by-packet Processor and Link Sharing (PPLS). The PPLS algo-
rithm, based on an extension of the Deficit Round Robin algo-
rithm [10], has a per-packet work complexity ofO(1). We il-
lustrate the fairness of the PPLS algorithm using both synthetic
traffic and real gateway traffic traces.

Even though this report primarily focuses on processing and
bandwidth resources, the FERA principle may be readily ap-
plied to a variety of contexts beyond those discussed in this
report.

C. Organization

The rest of this report is organized as follows. Section II
introduces a generic notation to represent notions of fairness.
This section also describes the general system model with mul-
tiple shared resources considered in this study, along with our
notation. Section III presents the Principle of Fair Essential
Resource Allocation for the system model under consideration.
Section IV applies the FERA principle to a system with a shared
processor and a shared link, and proposes a practical and fair
scheduling algorithm for the joint allocation of the processing

3

and bandwidth resources, called the Packet-by-packet Proces-
sor and Link Sharing (PPLS) policy. The fairness properties of
the PPLS strategy are demonstrated by simulation experiments
using both synthetic and real gateway traffic in Section V. Fi-
nally, Section VI concludes the report.

II. SYSTEM MODEL AND NOTATION

A. Generic Notation for Notions of Fairness

Consider a set ofN flows,1 ≤ i ≤ N , competing for a single
shared resource which may be consumed at a peak rate ofR.
Denote bywi the weight of flowi, indicating the flow’s relative
rightful share of the resources. For a flow under a Differentiated
Services (DiffServ) framework [17], its weight is determined
by its traffic class among the 64 possible classes; for a flow in
a best-effort network, its weight is typically the same as that of
all other flows.

Several different notions of fairness have been proposed in
the research literature for the allocation of a single shared re-
source among a set of requesting entities. All of these notions
specify a particular rate of consumption of the resource for each
of the flows, given the consumption rate demanded by the flows.
In this subsection, we develop a generic notation that can ex-
press any of these notions of fairness.

Without loss of generality, we assume that the entities com-
peting for the single shared resource are traffic flows. Letdi

be the demand of flowi for the shared resource. Define the
normalized demand of flowi, Di, for the resource as follows:

Di =
di

R
.

The normalized demand of flowi indicates the fractional share
of the resource demanded by the flow. Denote byai the allo-
cated resource consumption rate for flowi. Define the normal-
ized allocation of flowi, Ai, as follows:

Ai =
ai

R
.

The normalized allocation of flowi indicates the fractional
share of the resource allocated to flowi. Any notion of fair-
ness, thus, specifies how to distribute the fractional share of the
resource allocated to each flow, given the desired share of this
resource.

For the sake of convenience, throughout this report we use
vectors to indicate values corresponding to a set of flows. We
denote a vector by the indexed value in a pair of square brackets.
For instance, we denote the vector of normalized demands as
[Di].

Therefore, given the normalized demand vector[Di] and the
weight vector[wi], any given notion of fairness may be repre-
sented as

[Ai] = F(C, [Di], [wi]) (1)

whereC is the constraint, described later in greater detail, im-
posed on the system. The functionF is different for different
notions of fairness such as max-min fairness, proportional fair-
ness or utility max-min fairness. Note that the notion of fairness
in (1) imposes no dimension on any variable, thus making it ap-
plicable to systems with multiple heterogeneous resources.

Flow N

R1 RK
R2

Flow 2

Flow 1

Fig. 1. A general system model.

Often, a fairness notion implies a certain way to compute the
utility to a flow of the allocations. Different notions of fairness
assume different utility functions, though all are non-decreasing
functions with respect to quantity of the allocated resource. For
example, max-min fairness implies a linear utility function, pro-
portional fairness uses a logarithmic utility function, and in util-
ity max-min, each flow determines its own utility function. The
notion of fairness in (1) represents a general notation to describe
how, given a certain vector of demands, one may determine the
allocated consumption rate of the resource for each flow, in or-
der that the utilities corresponding to the allocations satisfy the
given fairness notion with respect to the demands for utility. In
other words, the notation of (1) implicitly incorporates utility
functions into the notion of fairness.

The constraintC is used as a parameter in the functionF
because, given the same demand and weight vector, the fair al-
location is different under different constraints imposed on the
system. The constraintC can be used to incorporate the perfor-
mance level achieved by the allocation. For example, an allo-
cation of no resource to any flow may also be considered a fair
allocation by the max-min fair criterion albeit one that leads to
very poor performance. In general, this parameter allows us to
define the fairness of non-work-conserving allocation strategies
by not imposing a specific level of performance achieved by the
allocation in the definition of fairness. As a simple example, the
constraintC can be just the sum of the utilities achieved by all
flows.

Note that, in the research literature, notions of fairness have
not been defined for multiple heterogeneous resources1. We
use the above notation that specifies a notion of fairness for a
single resource and extend the notion to multiple heterogeneous
resources in subsequent sections.

B. System Model and Assumptions

In our system model, a set ofN flows,1 ≤ i ≤ N , compete
for a set ofK related and essential resources,1 ≤ j ≤ K, as
shown in Fig. 1. As also described in Section I-B, we define an
essential resource as one for which a flow’s demand does not
reduce with an increase in the allocation of other resources to
it. Since a buffer is often not an essential resource, our assump-
tion that flows only compete for essential resources implies that
if there are buffers in the network shared by the flows, these
buffers are of infinite capacity so that the flows never compete

1Some notions of fairness such as max-min fairness and proportional fairness
can be defined for multiple resources of the same kind (e.g., a network of links),
under the assumption that, if a flow receives allocation of several resources, the
allocation of each of these resources it receives is identical [2,6]. However, it is
not straightforward to extend these notions of fairness to systems with multiple
heterogeneous resources. On the other hand, it can be readily verified that our
framework is the same as these notions of fairness if the shared resources are of
the same kind.

4

for the buffer resource. In developing our fundamental princi-
ples of fairness, we make no assumptions on the specific actions
of the scheduler or the specific order in which the packets use
theK resources.

Note that in this general model, we also make no assumptions
on the internal architecture of the set of shared resources. It can
be a simple sequence of resources such as in a tandem network
with multiple links, a parallel structure such as the resources of
electric power and bandwidth in a wireless sensor network, or
a more complex hybrid.

Denote byRj the peak rate at which resourcej may be con-
sumed. For example, in the case of a link resourceL, RL is the
peak bandwidth available on the link. As before, denote bywi

the weight of flowi. Letdi,j be the consumption rate demanded
by flow i for the shared resourcej. Our assumption of related
resources implies that, givendi,k, one can determinedi,j for
all j 6= k. Denote byaq

i,j , the consumption rate of the shared
resourcej allocated to flowi under the allocation policyq.

III. T HE FERA PRINCIPLE

A. The Concept of the Prime Resource

We begin with a few preliminary definitions.
Definition 1: Define the normalized demand of flowi for

resourcej, Di,j , as follows:

Di,j =
di,j

Rj
.

Define thelargest normalized demandof flow i, Di, as the
maximum amongst the normalized demands of flowi for all
resources. That is,

Di = max
j
{Di,j} .

Definition 2: DefineAq
i,j as the normalized allocation of

resourcej to flow i under allocation policyq, i.e.,

Aq
i,j =

aq
i,j

Rj
.

Definition 3: The largest normalized allocationof a flow
i under allocation policyq, denoted byAq

i , is defined as the
maximum amongst the normalized allocations to flowi of all
resources. That is,

Aq
i = max

j

{
Aq

i,j

}
.

Definition 4: Under an allocation policyq, a resource is
said to be aprime resourceof flow i, denoted byBq

i , if and
only if, the normalized allocation of this resource to flowi is
the largest normalized allocation. In other words,

Bq
i = arg max

j

{
Aq

i,j

}
= arg max

j

{
aq

i,j

Rj

}

wherearg maxx f(x) indicates the value of the argumentx cor-
responding to the maximum value of functionf(x). In other
words, we have

Aq
i,Bq

i
= max

j

{
Aq

i,j

}
= Aq

i .

TABLE I
EXAMPLES ILLUSTRATING WHAT IS A FAIR ALLOCATION IN A SYSTEM

WITH A SHARED PROCESSORP AND A SHARED LINK L. IN ALL OF THESE

EXAMPLES, THE TOTAL AMOUNT OF RESOURCEP IS 100 MHZ, AND THE

TOTAL AMOUNT OF RESOURCEL IS 100 MBPS.

Flow Demand Allocation
ID P (MHz) L (Mbps) P (MHz) L (Mbps)

1 75 25 75 25
A 2 25 75 25 75

1 225 75 75 25
B 2 50 150 25 75

1 100 20 50 10
C 2 100 10 50 5

In networking terminology, a bottleneck resource is one that
is the most congested. It is critical to note that neither the re-
source for which a flow has the largest normalized demand nor
its prime resource under an allocation policy is necessarily the
same as the bottleneck resource in the system.

Note that a flow may have more than one prime resource.
The prime resource is defined based on the actual allocations
and not on the demand of the flows for the resources.

B. The FERA Principle

We introduce our principle with a few illustrative examples
shown in Table I. In these examples, two flows with equal
weights, labeled as 1 and 2, share two different resources: a
processorP for packet processing, and a linkL for packet trans-
mission. The system model in these examples is the same as the
one we will discuss later in Fig. 2. The peak processing rate is
100 million processor cycles per second, i.e., 100 MHz, and the
peak link rate is 100 Mbps. Let us assume linear utility func-
tions and max-min as the notion of fairness. In addition, for
the sake of convenience, we also assume in these examples a
proportional relationship between a flow’s demands for these
resources, and therefore, a proportional relationship between
the allocations. In other words, the ratio of a flow’s demand for
one resource and its demand for another resource is always a
constant.

In example A, assume that packets in flow 1 are all small,
and therefore, its demand for bandwidth is small relative to its
demand for processing time. In contrast, assume that packets
in flow 2 are large, and therefore, its demand for bandwidth is
large relative to its demand for processing time. To better il-
lustrate the concept, we exaggerate the difference between their
demands as follows: flow 1 has a demand of 75 MHz for pro-
cessing time and 25 Mbps for bandwidth, while flow 2’s de-
mands are, respectively, 25 MHz and 75 Mbps. If a work-
conserving allocation policy is used, there is enough of both
resources to satisfy the demands of both the flows and so the
allocations are exactly the same as the demands for each of the
resources. Note that for flow 1, the prime resource isP , while
for flow 2, it is L.

5

Next, consider what happens when both flows proportionally
increase their demands for both resources. In example B, in
comparison to example A, flow 1 increases its demands by a
factor of three while flow 2 doubles its demands. Specifically,
the demands for flow 1 become 225 MHz forP and 75 Mbps
for L, while those for flow 2 become 50 MHz and 150 Mbps,
respectively. A fundamental principle behind the max-min no-
tion of fairness is that, given no additional resources, a flow
should not be able to increase its allocation by merely demand-
ing more. Thus, the fair allocation should be the same as in
example A, as shown in example B. Again, the prime resource
for either flow remains the same as in the previous example.

We discuss example B further. Obviously, in this case, nei-
ther flow is satisfied by the allocated resources. Is the allocation
actually fair?

One might argue that both flows should get equal bandwidth
from a fair allocation, since ultimately both flows will depart
from this system and the processor is only an intermediate re-
source before the flow’s packets reach the link resource. Based
on this notion, we can compute the allocations as

{
3x + x/3 ≤ 100

2x ≤ 100

wherex is the bandwidth allocated to either flow, in units of
Mbps. It can be readily verified that, under a work-conserving
allocation policy, flow 1 gets 90 MHz of processing time and
flow 2 gets only 10 MHz, while both flows get 30 Mbps of band-
width. While this allocation underutilizes the link resources,
that is not an argument against its fairness. The unfairness
arises from the fact that it unnecessarily favors the flow whose
prime resource is the “intermediate” resource, which turns out
to be flow 1 in this case. Another argument against this notion
is that, even though it is true that the processor in this case is po-
sitioned ahead of the link, it does not necessarily mean that the
processing resource becomes less important, or less preferred,
as compared to the link, which is positioned as the “final” re-
source.

Another allocation philosophy may be to allocate resources
based on a fair allocation of the most congested resource as
measured by the sum of the normalized demands for the re-
source. In this example, the processing resourceP is the most
congested resource. One may allocate resourceP fairly as

{
2y ≤ 100

y/3 + 3y ≤ 100

wherey is the processing resources allocated to either flow, in
units of MHz. Under a work-conserving allocation policy, flow
2 gets 90 Mbps of bandwidth and flow 1 gets only 10 Mbps,
while both flows get 30 MHz of processing resources. Note
that this allocation philosophy has a similar weakness as the one
based on the fair allocation of the link resource. It unnecessarily
favors the flow whose largest normalized demand is not for the
most congested resource.

One may suggest the following slight modification to the al-
location strategy: to fairly allocate the most congested resource
as measured by the sum of the normalizedallocationsfor the
resource. However, it can be shown that such an allocation may

not exist. Assume a certain resourcer is the most congested
resource. Letα denote the flow with the smaller demand for
resourcer and letβ denote the other flow. Assume that the
normalized allocations of resourcer arezα andzβ for the two
flows. It can be verified that the normalized allocations of the
other resource are3zα andzβ/3, independent of whether the
resourcer is the processing resourceP or the bandwidth re-
sourceL. Since resourcer is the most congested resource as
measured by the sum of the normalized allocations, we have,

3zα + zβ/3 ≤ zα + zβ

which leads to3zα ≤ zβ . Since both flow have a high demand,
under the max-min notion, this condition cannot lead to a fair
allocation except for the trivial case wherezα = zβ = 0. Thus,
it may not be possible to achieve a fair allocation of the most
congested resource as measured by the sum of the normalized
allocations of the resource.

Based on the discussions above, we claim that in a network
where no explicit preference of one resource over another ex-
ists (i.e., each resource is essential), fairness should not be de-
fined based only on a single resource, no matter how this single
resource is determined, and whether it is determined before al-
location (i.e., based on demand) or after allocation (i.e., based
on allocation). Instead, the fairness in such a system should be
defined with overall consideration of various resources involved
in the system and the relationships between the demands for the
various resources.

Given this observation, one may propose yet another scheme
to define fairness: the sum of the normalized allocations of the
resources computed for each flow should be max-min fair. In
the previous example B, this leads to an allocation of 75 MHz
of processing time and 25 Mbps of bandwidth for flow 1, and
25 MHz of processing time and 75 Mbps of bandwidth for flow
2. In this case, for both flows, the sum of the normalized allo-
cations of the two resources is75/100 + 25/100 = 1. While
this appears to be a reasonable strategy for fair allocation, this
scheme of fairness cannot, in fact, be extended to other situa-
tions. This is illustrated by example C described below.

Assume that both flows have a demand of 100 MHz for re-
sourceP , while the demands for resourceL are 20 Mbps and
10 Mbps for flows 1 and 2, respectively. Note that in this exam-
ple, there is sufficient link bandwidth available for the demands
of both flows, i.e., the flows are not in competition for resource
L. In other words, the system regresses into an allocation of a
single resourceP . Applying the max-min notion of fairness on
the single resourceP , we know that the fair allocation would be
50 MHz of processing time for each flow, leading to 10 Mbps
and 5 Mbps of bandwidth for flows 1 and 2, respectively. Thus,
the ideally fair allocation leads to 0.6 and 0.55 as the sum of
the normalized allocations. Clearly, if we were to not to be
max-min fair in the sum of the normalized allocations of the
resources to each flow, we would not get this result. This illus-
trates that the strategy of achieving max-min fair distribution in
the sum of the normalized allocations fails to serve as the basis
to define fairness in the allocation of multiple resources.

The fair allocation strategies in the three examples do have
one property in common: the largest normalized allocations of
the flows are distributed in a max-min fair manner among the

6

flows. In our case with equal weights for the flows, the largest
normalized allocations are equal for the two flows. In the first
two examples in Table I, resourceP is the prime resource for
flow 1, while the prime resource for flow 2 is resourceL. In
both examples, the largest normalized allocation equals 0.9 for
each flow. In the third example, the processorP is the prime
resource for both flows, and this time the largest normalized
allocation is 0.5 for both flows.

The observations from the above examples lead to the sig-
nificance of incorporating the largest normalized allocation for
each flow into a strategy for extending a notion of fairness to
the allocation of multiple resources. In our examples, the fair
allocation policy is to simply equalize the largest normalized al-
locations for different flows. In the general situation, different
notions of fairness may be used and flows may have different
weights, different largest normalized demands, and very differ-
ent utility functions. This leads to the followingPrinciple of
Fair Essential Resource Allocation.

Principle of Fair Essential Resource Allocation (FERA):In
a system with multiple related and essential resources, an allo-
cation policyq is said to be fair as per the notion of fairnessF ,
if and only if, the largest normalized allocations are distributed
fairly, as per the notion of fairnessF , with respect to the largest
normalized demands. In other words, allocation policyq is fair
as perF if and only if,

[Aq
i] = F (C, [Di], [wi])

whereC is some constraint imposed on the system.

C. Fair Work-Conserving Allocation Policy

Recall that we make no assumption on whether or not the
allocation policy is work-conserving. Therefore, under differ-
ent constraints, a single system can have more than one fair
allocation policy as per the same notion of fairness. Given a
constraint, however, there exists a unique work-conserving fair
allocation policy in most situations, as will be proved in this
section.

First, we formally define a work-conserving policy in the al-
location of multiple resources. Recall that in the allocation of a
single resource, an allocation policy is work-conserving if and
only if one of the following two situations occurs.

1) The demands of all flows are satisfied.
2) The shared resource is completely allocated.

In other words, no more of the resource can be further allocated
to the flows. The same idea can be applied to the allocation of
multiple resources, except that now it is possible that only one
resource is fully utilized.

Definition 5: In the allocation of multiple resources, an al-
location policy is said to bework-conserving, if and only if,
upon completion of the allocation, no more of any resource can
be further allocated to a flow without also reducing the amount
of some resource allocated to another flow.

Next we introduce two general classes of fairness notions
which describe the conditions under which the uniqueness of
the fair work-conserving allocation policy will hold.

Definition 6: A notion of fairnessF is said to beuniquely
deterministic, if and only if, given the constraintC, the nor-
malized demand vector[Di], and the weight vector[wi], one

can uniquely determine the normalized allocation vector[Ai]
as given in (1).

Definition 7: A notion of fairnessF is said to benon-
decreasing, if and only if, given the normalized demand vector
[Di] and the weight vector[wi], the normalized allocation[Ai]
is such that, for any two different constraintsC1 andC2, one of
the following holds true:

F (C1, [Di], [wi]) ≺ F (C2, [Di], [wi])
F (C2, [Di], [wi]) ≺ F (C1, [Di], [wi]) .

Here≺ is a relational operator between two vectors of identical
dimensions, and[ui] ≺ [vi] implies∀i, ui ≤ vi. This definition
of non-decreasing fairness notion can be also expressed as fol-
lows: when allocating a single resource under a non-decreasing
fairness notion, no flow will get a lesser amount of the resource
if the total amount of the shared resource increases.

These classes of fairness notions are actually very broad; it
may be readily verified that many popular notions of fairness
are both non-decreasing and uniquely deterministic. These in-
clude max-min fairness [3–5], proportional fairness [6], and
utility max-min fairness [7] if the utility functions are non-
decreasing.

Theorem 1: If the applied notion of fairness is both non-
decreasing and uniquely deterministic, there exists a unique fair
work-conserving allocation policy that satisfies the FERA prin-
ciple as stated in Section III-B.

Proof: The reader is referred to Appendix I.

IV. FAIR JOINT ALLOCATION OF PROCESSING AND

BANDWIDTH RESOURCES

In this section, we apply the framework established in the
previous section into an important context of special interest:
the fair joint allocation of a shared processorP and a shared
link L under the max-min notion of fairness and linear utility
functions.

A. System Model

In this system model, a set ofN flows share a processorP
and a linkL, as shown in Fig. 2. Packets from each flow are
processed by processorP first and then transmitted onto the
output linkL. Denote byRL the peak bandwidth rate of link
L and byRP the peak processing rate of processorP . Pack-
ets of each flow await processing by the processor in an input
buffer of infinite capacity, and then upon completion of the pro-
cessing, await transmission on the output link in another buffer
of infinite capacity. The joint allocation of the processing and
bandwidth resources is accomplished by the scheduler which
acts on the packets in the input buffers and appropriately orders
them for processing by the processor. No scheduling action
takes place after the processing; processed packets are received
in the buffer between the processor and the link, and are trans-
mitted in a first-come-first-served fashion.

Denote bywi the weight of flowi, 1 ≤ i ≤ N , indicating the
flow’s relative rightful share of the resources.

7

Scheduler P L

Flow N

Flow 2

Flow 1

Fig. 2. The system model with a shared processorP and a shared linkL.

B. Fluid-flow Processor and Link Sharing

Denote byS the system illustrated in Fig. 2. We first con-
sider fluid-flow traffic through systemS, and describe an ide-
ally fair allocation strategy called theFluid-flow Processor and
Link Sharing (FPLS)algorithm. FPLS is intended to serve the
same purpose for systemS as that served by Generalized Pro-
cessor Sharing (GPS) for a system with just a single shared link
or a single shared processor [4,5].

In GPS, it is assumed that traffic from each flow can be di-
vided into infinitesimally small chunks, and each chunk has its
demand for access to the linkL depending on the size of the
chunk. The GPS scheduler visits each active flow’s queue in a
round-robin fashion, and serves an infinitesimally small amount
of data from each queue, in such a way that during any infinites-
imal interval of time, it can visit each queue at least once. In our
study, this assumption is still valid, and we further assume that
each infinitesimal chunk also has its demand for the processing
time on the shared processorP .

At each time instantτ , the prime resource for each flow, ac-
cording to Definition 4, can be determined based on its instan-
taneous demands for processing time and bandwidth. In addi-
tion, we assume that during each infinitesimal interval of time,
[τ, τ + ∆τ), the prime resource for each flow does not change.

Note that in GPS, it is guaranteed that during each infinites-
imal interval of time, the chunks of each flow are scheduled in
such a way that, for each flow, the total demand for bandwidth
corresponding to the chunks of the flow scheduled in this period
is proportional to the weight of the flow. Extending GPS to our
case leads to the following: under the ideally fair allocation pol-
icy for systemS, it is guaranteed that, during each infinitesimal
interval of time, the chunks of each flow are scheduled in such
a way that, for each flow, the totalnormalizeddemand for its
prime resourcecorresponding to the chunks of the flow sched-
uled in this period is proportional to the weight of the flow. We
refer to this asFluid-flow Processor and Link Sharing (FPLS).
It can be readily verified that the FPLS strategy meets the FERA
principle described in Section III-B.

C. Packet-by-packet Processor and Link Sharing

It is apparent that FPLS is an ideally fair but unimple-
mentable policy, in the same sense as GPS. In reality, network
traffic is always packetized, and therefore, we next present a
practical approximation of FPLS, calledPacket-by-packet Pro-
cessor and Link Sharing (PPLS). The pseudo-code of PPLS is
shown in Fig. 3.

The PPLS algorithm extends one of the most practical and
simple scheduling strategies, Deficit Round Robin (DRR) [10],
used in the allocation of bandwidth on a link. For each flow,
the DRR algorithm maintains adeficit counter (DC), which is

1 Initialize:
2 FlowList← NULL;

3 Enqueue:/* Invoked whenever a packet arrives */
4 p ← ArrivingPacket;
5 i ← Flow(p); /* Flow of packetp */
6 if (ExistsInFlowList(i) = FALSE) then
7 Append flowi to FlowList;
8 PDCi ← 0;
9 LDCi ← 0;
10 end if;

11 Dequeue:/* Always running */
12 while (TRUE) do
13 if (FlowList 6= NULL) then
14 i ← HeadOfFlowList;
15 Removei from FlowList;
16 PDCi ← PDCi + PQi;
17 LDCi ← LDCi + LQi;
18 if (PDCi > maxPDCi) then
19 PDCi ← maxPDCi;
20 end if;
21 if (LDCi > maxLDCi) then
22 LDCi ← maxLDCi;
23 end if;
24 while (QueueIsEmpty(i) = FALSE) do
25 p ← HeadOfLinePacketInQueue(i);
26 if (Size(p) > LDCi OR
27 ProcessingCost(p) > PDCi) then
28 break; /* escape from the inner while loop */
29 end if;
30 PDCi ← PDCi− ProcessingCost(p);
31 LDCi ← LDCi− Size(p);
32 Schedulep;
33 end while;
34 if (QueueIsEmpty(i) = FALSE) then
35 Append queuei to FlowList;
36 end if;
37 end if;
38 end while;

Fig. 3. Pseudo-code of the Packet-by-packet Processor and Link Sharing
(PPLS) algorithm.

incremented in each round by a predetermined quantity,quan-
tum. When the scheduler visits one flow, it transmits the pack-
ets from this flow with a total length no more than the deficit
counter associated with this flow. Upon the completion of a
flow’s service opportunity, its deficit counter is decremented by
the total size of its packets scheduled in the round. It has been
shown in [10] that, if the quantum of each flow is proportional
to its weight, the relative fairness measure as defined in [9] can
be bounded.

The PPLS algorithm approximates the ideal FPLS in a very
similar fashion as DRR achieves an approximation of GPS. The
PPLS scheduler maintains a linked list of the backlogged flows,
FlowList. When the scheduler is initialized,FlowList is set to
an empty list (line 2). For each flow, two variables, instead of
one as in DRR, are maintained in the PPLS algorithm: aproces-
sor deficit counter (PDC)and alink deficit counter (LDC). The
link deficit counter is exactly the same as the deficit counter in
DRR, which represents the deviation of the bandwidth received
by the flow from its ideally fair share. The processor deficit

8

counter, on the other hand, represents the deviation of the pro-
cessing time allocated to the flow from its ideally fair share.
Thus, each flow in PPLS is assigned two quantum values, a
processor quantum (PQ)and alink quantum (LQ).

When a new packet arrives, theEnqueueprocedure is in-
voked (lines 3–10). If this packet comes from a new flow, the
Enqueueprocedure appends this flow to the end of theFlowList
(line 7) and initializes both of its deficit counters to 0 (lines 8–
9).

TheDequeueprocedure (lines 11–38) functions as follows. It
serves all flows in theFlowList in a round-robin fashion. When
the scheduler visits flowi, it first increments each of the two
deficit counters of this flow by the value of the corresponding
quantum (lines 16–17). It then verifies whether or not these two
deficit counters exceed their upper bounds respectively, and if
they do, it resets them to the maximum possible values (lines
18–23). The rationale behind this bounding process will be dis-
cussed later in detail. After the deficit counters of flowi are
updated, a sequence of packets from flowi are scheduled as
long as the total length of these packets is smaller than the link
deficit counter, and the total processing cost is smaller than the
processing deficit counter, as in thewhile loop in lines 24–33.
In the meantime, when a packet is scheduled, both deficit coun-
ters are decremented by the corresponding cost of this packet
(lines 30–31). Finally, when the scheduler finishes serving a
flow and the flow still remains backlogged, the scheduler places
the flow back at the end of theFlowList (lines 34–36).

Recall that in DRR, for each flow, the quantum is set to be
proportional to its weight, therefore, each flow receives in each
round, on average, a service of total amount proportional to its
weight. In this report, the sum of a certain quantity overall
flows is denoted by dropping the subscript for the flow in the
notation. For example,w is the sum of the weights for all flows,
i.e.,w =

∑
i wi. Therefore, in DRR, we have

Qi

wi
=

Q

w
,∀i.

Similarly, in PPLS, the quantum values of each flow are also
proportional to its weight, i.e.,∀i,

PQi

wi
=

PQ

w
(2)

LQi

wi
=

LQ

w
. (3)

Thus the amount of the shared resources each flow is entitled
to utilize in each round is guaranteed to be, on average, propor-
tional to its weight. In addition, the ratio of the sum of process-
ing quanta for all flows,PQ, to the sum of link quanta for all
flows,LQ, should also be equal to the ratio of the total amount
of processing resource to the total amount of link resource in
each round, i.e.,

PQ

LQ
=

RP

RL
. (4)

From (2), (3) and (4), it is apparent that,

PQi

LQi
=

RP

RL
. (5)

In other words, for each flow, the quantum value corresponding
to a resource is proportional to the total amount of that resource.

Note that in PPLS, it is possible that the prime resource for
flow i remains the same for a long period, and therefore, with-
out the bounding procedure in lines 18–23, the deficit counter
for the non-prime resource would reach a large value. For ex-
ample, consider a case in which the prime resource for flow
i has been the processing resourceP for a long time and, as
a result, the link deficit counterLDCi is very large. Assume
that at this point, the prime resource for flowi switches to the
link resourceL and, in addition, flowi now consumes almost
no processing resource. In such a situation, flowi will be able
to have a long sequence of packets scheduled because of its
large link deficit counterLDCi. This would significantly de-
grade the short-term fairness of the PPLS scheduler. For this
reason, we choose to set a maximum threshold on the deficit
counter for each resource, in case any specific resource has not
been fully utilized for a long time. In cases where short-term
fairness is not important, these thresholds may simply be set
to infinity. A similar rationale may also be found in the con-
text of fair scheduling in wireless networks where a maximum
lag is applied when a flow has not fully utilized its share of the
bandwidth [18].

It can be readily verified that if the processor resourceP is
sufficient for all flows, i.e., the processor resourceP never be-
comes the prime resource for any flow, the PPLS strategy re-
gresses into the DRR policy. It can also be readily verified that,
like DRR, the per-packet computing complexity of the PPLS
algorithm isO(1), under the condition that for each flowi,
LQi > ML andPQi > MP whereML andMP are the maxi-
mum packet size and the maximum packet processing cost, re-
spectively. The proof of this work complexity is similar to that
for DRR [10].

D. Fairness Analysis of PPLS

Our fairness analysis of PPLS is an extension of that
in [10]. Recall that in bandwidth sharing, thefairness
measure, FM(t1, t2), is defined as the maximum value of
Senti(t1, t2)/wi−Sentj(t1, t2)/wj amongst all pairs of flows
(i, j) backlogged in the interval[t1, t2), whereSenti(t1, t2)
is the total length of the packets transmitted by the scheduler
from flow i during interval[t1, t2), i.e., the cumulative amount
of bandwidth resource allocated to flowi during this interval.
In addition, the fairness boundFB is defined as the maximum
value ofFM(t1, t2) for all possible intervals[t1, t2) [10]. Note
that the dimension ofSenti(t1, t2) is in units of packet length,
i.e., bytes. To extend this concept to our situation of multiple
heterogeneous resources, we need to normalize it by the peak
resource consumption rate.

The normalized cumulative processor allocationof flow i
during time interval[t1, t2), denoted byCPAn

i (t1, t2), is de-
fined as the total amount of the processing resource allocated
to flow i during interval[t1, t2), normalized by the peak pro-
cessing rateRP . Thenormalized cumulative link allocationof
flow i during time interval[t1, t2), denoted byCLAn

i (t1, t2),
is similarly defined, except that the resource associated is the
bandwidth.

9

Note that both the normalized cumulative link allocation and
the normalized cumulative processor allocation are in units of
time. Therefore, we are able to proceed to define thenormal-
ized cumulative resource allocationof flow i during time in-
terval[t1, t2), denoted byCRAn

i (t1, t2), as the larger value be-
tween the normalized cumulative processor and link allocations
of flow i during[t1, t2). In other words,

CRAn
i (t1, t2) = max{CPAn

i (t1, t2),CLAn
i (t1, t2)}.

Now we can extend the definition of the fairness measure as
follows:

Definition 8: The normalized fairness measureover time
interval[t1, t2), FMn(t1, t2), is defined as the maximum value,
amongst all pairs of flows(i, j) that are backlogged during time
interval [t1, t2), of the normalized cumulative resource alloca-
tion CRAn

i (t1, t2). That is,

FMn(t1, t2) = max
∀(i,j)

∣∣∣∣
CRAn

i (t1, t2)
wi

− CRAn
j (t1, t2)
wj

∣∣∣∣ .

Thenormalized fairness boundFBn is defined as the maximum
value of the normalized fairness measureFMn(t1, t2) over all
possible intervals[t1, t2).

Analogous to the case of a single shared resource, if a
scheduling algorithm for the joint allocation of processing and
bandwidth resources leads to a finite normalized fairness bound,
one can conclude that this algorithm approximates the ideally
fair allocation and achieves long-term fairness. The following
theorem states this about the PPLS algorithm.

Theorem 2: The normalized fairness bound of PPLS is a
finite constant.

Proof: The reader is referred to the Appendix II.

V. SIMULATION RESULTS AND ANALYSIS

Our simulation model consists of 8 flows with equal weights
sharing a processorP and a linkL, as shown in Fig. 1(a). Five
different scheduling policies including the PPLS algorithm are
implemented.
• FCFS (First-Come First-Served): A simple FCFS scheme

is used. The scheduling order is only determined by the
packet timestamps.

• PPLS: When the PPLS algorithm is implemented, a FCFS
strategy is used on the buffer between the processorP and
the linkL, since the order of the packets has already been
determined by the PPLS algorithm.

• LDRR (Link Deficit Round Robin): A DRR algorithm in
the allocation of only the link bandwidth is implemented
(i.e., the original DRR).

• PDRR (Processor Deficit Round Robin): A DRR algo-
rithm in the allocation of only the processing resource is
implemented.

• DDRR (Double Deficit Round Robin): Two DRR sched-
ulers are used. PDRR is used before the processorP and
LDRR is used before the linkL. Note that this is the only
scheme in which a scheduler is implemented between the
processor and the link.

TABLE II
THE RATIO OF THE PROCESSING RESOURCE TO THE LINK RESOURCE

REQUIRED BY EACH FLOW IN OUR STUDY USING SYNTHETIC TRAFFIC.

Flow ID P/L Ratio (in cycles/byte)

1 1
2 2
3 3
4 4

5 1
6 1/2
7 1/3
8 1/4

In the following, we describe two sets of simulation exper-
iments. In the first set of experiments, a synthetic traffic se-
quence is used, while the second set uses real gateway traffic
traces.

A. Synthetic Traffic

In our first study, we use synthetic traffic to test the fairness
properties of the PPLS algorithm under some extreme situa-
tions. For each flow, the ratio of the amount of the processing
resource required to the amount of the bandwidth resource re-
quired is a fixed value. Note that in the definition of the normal-
ized fairness measure,FMn(t1, t2), if both theRP andRL are
multiplied by the same value, the normalized fairness measure
will also be multiplied by this value. In other words, the fact
of whether or not the normalized fairness measure is bounded
does not change except that the bound itself may vary. There-
fore, for better illustration and easier comparison, we normalize
the resource amounts such that the average number of proces-
sor cycles needed per packet is numerically equal to the average
number of bytes per packet. Table II shows the ratios used in
this study. Note that flows 1 and 5 have equal normalized de-
mands for both resources. The prime resource for flows 2, 3
and 4 is the processor, and that for flows 6, 7 and 8 is the link.
For flows 1 to 4, the sizes of packets generated is uniformly dis-
tributed between 1 and 1,600 bytes, while for flows 5 to 8, the
processing cost is uniformly distributed between 1 and 1,600
cycles. Therefore, the maximum packet size is 6,400 bytes and
the maximum processing cost is 6,400 cycles. These maximum
values are the quantum values assigned to each flow.

Fig. 4 shows the normalized cumulative resource allocations,
CRAn

i (0, τ), for all flows i after a long run in the simulations.
In this plot, the fairer an allocation policy, the closer its corre-
sponding curve to a straight horizontal line. It is apparent from
this figure that the PPLS scheduling policy does achieve good
fairness. Note that, as expected, the FCFS scheme is the worst
among all in terms of fairness. Regarding LDRR and PDRR,
each can achieve fair distribution of the normalized cumulative
allocation with respect to a certain resource, but not the overall
normalized cumulative resource allocation. Take LDRR as an
example. It achieves fair distribution of the normalized cumula-
tive link allocation for all flows. Therefore, flows with the pro-
cessor as the prime resource, namely flows 2 to 4 in this case,

10

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
x 10

7

Flow ID

N
or

m
. C

um
u.

 R
es

. A
llo

c.

FCFS
LDRR
PDRR
DDRR
PPLS

Fig. 4. The simulation results using synthetic traffic. In this plot, the fairer
an allocation policy, the closer its corresponding curve to a straight horizontal
line.

receive a larger amount of normalized cumulative processor al-
location as compared to other flows. This indicates that LDRR
fails to achieve overall fairness among flows. PDRR functions
exactly in the opposite way: it fairly distributes the normalized
cumulative processor allocation among all flows, but flows with
the link as the prime resource (flows 5 to 8) receive a large nor-
malized cumulative link allocation. Thus, PDRR also fails to
achieve overall fairness.

One interesting observation is regarding the DDRR scheme.
Intuitively, one may expect DDRR to serve as a fair scheduler
in the allocation of processing and bandwidth resources, since
it has two schedulers, one fair with respect to the processor and
the other fair with respect to the link. However, Fig. 4 shows
that this is not the case. This is because the DDRR scheme im-
plements the two fair schedulers in different stages. Note that
the PDRR scheduler before the processorP is responsible for
fairly allocating the normalized cumulative processor allocation
to all flows. That means, at this point, more packets (in bytes)
from those flows with the link as the prime resource (flows 6 to
8) will be scheduled from the processorP . On the other hand,
those flows with the processor as the prime resource (flows 2
to 4) will not have enough packets remaining backlogged in
the buffer before the linkL. The LDRR scheduler, therefore,
finds flows 2 to 4 to be relatively idle and ends up transmitting
more packets from flows 6 to 8, thus causing a higher normal-
ized cumulative resource allocation for flows 6 to 8. In fact,
the DDRR scheme allocates resources fairly to all flows with
the same prime resource, but favors the flows with the “final”
resource as the prime resource.

B. Gateway Traffic Traces

In this study, we use real traffic recorded at an Internet gate-
way as the input traffic [14, 19].2 The traffic traces include the
processing delay (in milliseconds) for each packet, along with

2Global Positioning System technology was used to precisely record the
timestamp of each packet at each node. In the trace data, filtered IP headers
were examined to track the same packet at different nodes. The difference be-
tween the timestamps of the same packet at adjacent nodes was computed as
the delay. The link speed connecting these nodes was taken into consideration
so that the transmission delay of each packet was removed from the recorded
delay. Note that this delay was still the sum of the processing delay and the
queueing delay. However, it was noticed that for traffic in one of the two direc-

(a)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
x 10

7

Flow ID

N
or

m
. C

um
u.

 R
es

. A
llo

c.

FCFS
LDRR
PDRR
DDRR
PPLS

(b)

1 2 3 4 5 6 7 8
3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

7

Flow ID

N
or

m
. C

um
u.

 R
es

. A
llo

c.

maxDC/Q = 5
maxDC/Q = 10
maxDC/Q = 15
maxDC/Q = 20
maxDC/Q = ∞

Fig. 5. The simulation results using gateway traffic traces. (a) The case when
maxPDCi andmaxLDCi are large enough for alli such that lines 19 and 22
in Fig. 3 are never executed. (b) The effect ofmaxPDCi andmaxLDCi in the
PPLS algorithm. Here, for alli, we assumemaxPDC i = maxLDC i =
maxDC andPQi = LQi = Q. Again, in these plots, the fairer an allocation
policy, the closer its corresponding curve to a straight horizontal line.

the packet size (in bytes). For our experiments, we assume a
fixed processing rate, and correspondingly convert the process-
ing delay of each packet into processor cycles. Again, we con-
vert the processing delay of each packet in such a way that the
average processing delay per packet (in units of cycles) is nu-
merically equal to the average size per packet (in units of bytes).
To achieve a better comparison with the previous study using
synthetic traffic, the flows have been ordered in such way that
the overall prime resource for flows 1 to 4 is the processor, and
that for flows 5 to 8 is the link.

Fig. 5(a) illustrates the normalized cumulative resource allo-
cation for the five scheduling policies in this experiment. Again,
the PPLS algorithm performs very well in terms of fairness. It
is observed that all other conclusions drawn from the synthetic
study are still valid.

Note that in this study, the DDRR scheme performs closer to
the PPLS algorithm than in the previous study. This can be at-
tributed to the fact that in real traces, the demands of each flow
for the processing and bandwidth resources are more balanced
than those in the synthetic traffic. However, this would not be
valid if a flow has a dominant demand for one resource in com-
parison to another, as might happen during a DoS attack. In

tions, the queue occupancy was never above 1 packet, and this eliminates the
queueing delay and validates the use of this delay as the pure processing delay.

11

addition, the PPLS algorithm only needs one scheduler in real
implementation while the DDRR needs two.

C. Effect of Maximum Deficit Counter Values

Note that in the synthetic study, no flow changes its prime re-
source during the experiment. Therefore, the setting of the max-
imum values of the deficit counters (maxPDCi andmaxLDCi)
in the PPLS algorithm has no effect on the outcome of the sim-
ulations. Next, using the real gateway traces, we focus on the
effect of setting the maximum values of deficit counters in the
PPLS algorithm. This is shown in Fig. 5(b), where we assume
that, for all i, maxPDCi (in units of processing cycles) is nu-
merically equal tomaxLDCi (in units of bytes).

It is apparent that the prime resource of a flow changes in this
study, since the normalized cumulative resource allocation be-
gins to show differences under the PPLS algorithm. However,
it should be noticed that the normalized cumulative resource al-
locations for the flows are still reasonably close to each other,
due to the long-term fairness achieved by the PPLS algorithm.

From Fig. 5(b), it is observed that, as expected, the long-term
fairness among normalized cumulative resource allocations de-
grades as the set maximum values of the deficit counters de-
crease. For example, when the maximum deficit counters are
set to be 10 times as large as the quantum values, the normalized
cumulative resource allocation exhibits a 10% variation from
the ideal.

It is also observed from Fig. 5(b) that flows with more bal-
anced normalized cumulative allocations between the two re-
sources over the long run, such as flows 1, 2 and 5, are likely
to receive less normalized cumulative resource allocation. This
may be attributed to the fact that these flows are more likely to
temporarily change the prime resource, and therefore, setting
the deficit counter for the current non-prime resource to the
maximum value may reduce the future usage of this resource
when it later becomes the prime resource. On the other hand,
the unbalanced flows are less likely to temporarily change the
prime resource, and therefore, the effect on these flows of set-
ting the deficit counter for the non-prime resource to the max-
imum value is limited. Similar scenarios may also be found in
other situations, such as bandwidth sharing. For example, in
DRR, a flow that frequently changes its status (between being
backlogged and not being backlogged) will be sacrificed in the
long run, since each time it becomes non-backlogged its unused
deficit counter is reset to 0, thus causing it to lose bandwidth
share.

Based on the above discussion, by setting appropriate max-
imum values for the deficit counters, one can tune the trade-
offs between long-term and short-term fairness achieved by the
PPLS algorithm. This is similar to the role played by the maxi-
mum lag in wireless scheduling [18].

VI. CONCLUDING REMARKS

A. Summary

Research in fair allocation of the bandwidth resource has
been active for decades. Traffic flows, however, encounter
multiple resources other than bandwidth, including processor,
buffer, and power, as they traverse the network. Further, the

bandwidth resource is not always the sole bottleneck causing
network congestion. In this report, we consider a set of shared
resources which areessential and relatedsuch as processor,
link bandwidth, and power. We then present thePrinciple
of Fair Essential Resource Allocation, or the FERA principle,
which defines the fairness in the joint allocation of these re-
sources. We further apply the FERA principle into a system
consisting of a shared processor and a shared link, and propose
a practical andprovably fair algorithm, thePacket-by-packet
Processor and Link Sharing (PPLS), for the joint allocation of
the processor and bandwidth resources. It is our hope that this
work will facilitate future research on achievingprovablefair-
ness in computer networks.

B. A Discussion on Implementation of PPLS

In this report, we select DRR [10] as the starting point in
the design of the fair allocation policy for a shared processor
and a shared link, because of its relatively simple implementa-
tion. Other fair scheduling algorithms can be also used, such as
Weighted Fair Queueing (WFQ) [3], Worst-case Fair Weighted
Fair Queueing (WF2Q) [11], Surplus Round Robin (SRR) [20],
and Elastic Round Robin (ERR) [12].

Note that in many situations, the processing cost of a packet
cannot be determined before it is actually processed. If this
is the case, one can have the following choices to modify the
PPLS algorithm. The first way is to let the scheduler predict
the processing cost, and make scheduling decisions based on
predicted values. In the second choice, the scheduler serves the
packet first, then updates the deficit counters accordingly. In
this way, it is possible that after serving a packet, its process-
ing deficit counter becomes negative, thus breaking the fairness
property of the PPLS algorithm. Therefore, the scheduler needs
an additional counter to record the minimum normalized deficit
counter for all flows, and if this value becomes negative, at the
beginning of next round, it needs to add a proper amount to the
deficit counter of each flow to make it non-negative. Note that
even when using prediction before scheduling, one still needs
this protection from a negative deficit counter. Therefore, one
can combine these two approaches: predict first, and then cor-
rect if not accurate. In using this method, the PPLS algorithm
would incorporate some of the principles of the ERR scheduler
[12], where the resource requirements are not assumed to be
known prior to the allocation.

C. Discussions on Further Extensions

Note that in our study, it is assumed that each flow has a
unique weight which determines its relative rightful share for
each resource. If instead, for each flow, a different weight is
associated with each individual resource, the premise of this
work can still be applied. The only difference would be that
when defining the prime resource for each flow, the weight for
each individual resource needs to be taken into consideration.
This requires an additional concept, theprime weight, defined
as the weight associated with the prime resource. In this case,
for all flows, the quantum values for each resource in the PPLS
algorithm need to be proportional to the weights corresponding
to that resource.

12

Even though we have focused only on the processing and
bandwidth resources, the FERA principle and the design of the
PPLS algorithm may be easily extended to systems with addi-
tional essential and related resources, such as a wireless system
where processor, link, and power are all shared. In this case, for
each flow, three quanta and three deficit counters are needed.
The core of the algorithm, however, remains the same, i.e., a
packet from a flow can be scheduled only if all three deficit
counters of the flow are large enough.

REFERENCES

[1] D. Cohen and K. Narayanaswamy, “A fair service approach to defending
against packet flooding attacks,” http://www.cs3-inc.com/ddos.html.

[2] D. P. Bertsekas and R. Gallager,Data Networks, Prentice Hall, Upper
Saddle River, NJ, 2nd edition, 1991.

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” inProc. ACM SIGCOMM, Austin, TX, Sep. 1989,
pp. 1–12.

[4] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated service networks – the single node
case,” inProc. IEEE INFOCOM, Florence, Italy, May 1992, pp. 915–
924.

[5] S. Keshav,An Engineering Approach to Computer Networking: ATM Net-
work, the Internet, and the Telephone Network, Addison-Wesley, Read-
ing, MA, 1997.

[6] F. Kelly, “Charging and rate control for elastic traffic,”Europ. Trans.
Telecom., vol. 8, no. 1, pp. 33–37, Jan. 1997.

[7] Z. Cao and E. W. Zegura, “Utility max-min: An application-oriented
bandwidth allocation scheme,” inProc. IEEE INFOCOM, New York,
NY, Mar. 1999, pp. 793–801.

[8] L. Kleinrock, Queueing Systems, vol. 2, Computer Applications, Wiley,
New York, NY, 1976.

[9] S. J. Golestani, “A self-clocked fair queueing scheme for broadband ap-
plications,” inProc. IEEE INFOCOM, Toronto, Canada, Jun. 1994, pp.
636–646.

[10] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Networking, vol. 4, no. 3, pp. 375–385,
Jun. 1996.

[11] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair
queueing,” inProc. IEEE INFOCOM, San Francisco, CA, Mar. 1996, pp.
120–128.

[12] S. S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet
scheduling using elastic round robin,”IEEE Trans. Parall. Distr. Syst.,
vol. 13, no. 3, pp. 324–336, Mar. 2002.

[13] J. M. Blanquer and B.̈Ozden, “Fair queuing for aggregated multiple
links,” in Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001, pp. 189–
197.

[14] K. Mochalski, J. Micheel, and S. Donnelly, “Packet delay and loss at
the Auckland Internet access path,” inProc. Passive Active Measure.
Workshop, Fort Collins, CO, Mar. 2002.

[15] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivastava,
“E2WFQ: An energy efficient fair scheduling policy for wireless sys-
tems,” in Proc. Int. Symp. Low Power Electr. Design, Monterey, CA,
Aug. 2002, pp. 30–35.

[16] Y. Zhou and H. Sethu, “Toward end-to-end fairness: A framework for
the allocation of multiple prioritized resources,” inProc. IEEE Int. Perf.
Comput. Commun. Conf., Phoenix, AZ, Apr. 2003, pp. 495–504.

[17] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,An
Architecture for Differentiated Services, Dec. 1998, IETF RFC 2475,
http://www.ietf.org/rfc/rfc2475.txt.

[18] S. Lu, V. Bhargavan, and R. Srikant, “Fair scheduling in wireless packet
networks,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 473–489,
Aug. 1999.

[19] WAND Research Group, “Auckland-VI trace data,”
http://pma.nlanr.net/Traces/long.

[20] S. Floyd and V. Jacobson, “Link-sharing and resource management mod-
els for packet networks,”IEEE/ACM Trans. Networking, vol. 3, no. 4, pp.
365–386, Aug. 1995.

[21] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet
networks,” inProc. ACM SIGCOMM, Cannes, France, Sep. 1997, pp.
63–74.

APPENDIX I
PROOF OFTHEOREM 1

Lemma 1: In a system with multiple essential and related
resources, the normalized allocations received by a flowi are
identical under two allocation policiesq ands if Aq

i = As
i .

Proof: Let Bq
i andBs

i be one of the prime resources of
flow i under policiesq ands, respectively. We have,

Aq
i,Bs

i
≤ Aq

i,Bq
i

As
i,Bq

i
≤ As

i,Bs
i
.

In addition, we haveAq
i,Bq

i
= As

i,Bs
i

sinceAq
i = As

i . Therefore

Aq
i,Bs

i
≤ As

i,Bs
i

which means flowi receives less allocation of
resourceBs

i under policyq than under policys. Also, since
the resources are essential, flowi receives no more allocation
of any other resource includingBq

i under policyq than under
policy s, i.e.,

As
i,Bq

i
≥ Aq

i,Bq
i

= As
i,Bs

i
= As

i .

This meansBq
i is also one of the prime resources of flowi under

policy s. It may be similarly deduced thatBs
i is one of the prime

resources of flowi under policyq. In summary, ifAq
i = As

i , the
sets of prime resources of flowi are identical under policiesq
ands if Aq

i = As
i , and the allocations of these prime resources

to flow i are also identical under policiesq ands. Since the
resources are related, flowi receives identical allocations of all
resources from both policiesq ands.

Now, we will proceed to prove Theorem 1 by contradiction.
Assume that in the considered system, when applying the

FERA principle, two different policiesq and s are both fair
work-conserving allocation policies corresponding to the no-
tion of fairnessF . Denote the constraints corresponding to
these two allocation policies byCq andCs, respectively.

Note that for these two allocation policiesq ands, the vectors
of the largest normalized allocations, i.e.,[Aq

i] and[As
i], cannot

be equal. This is because if that is the case, from Lemma 1,
the allocated amount of each resource for each flow will be the
same under policiesq ands, and policiesq ands will be iden-
tical.

Since the system under consideration remains the same, we
know that both the vector of the largest normalized demands
[Di] and the vector of the flow weights[wi] are the same. From
the definition of a uniquely deterministic notion of fairness, we
know thatCq 6= Cs since, otherwise, the two vectors of largest
normalized allocations,[Aq

i] and[As
i], will be equal.

Since the notion of fairnessF is non-decreasing, from the
definition, we have either[Aq

i] ≺ [As
i] or [As

i] ≺ [Aq
i]. Without

loss of generality, we assume that[Aq
i] ≺ [As

i], i.e.,

Aq
i ≤ As

i ,∀i. (6)

Therefore, for all flows, the allocated amount of each resource
under policyq is no more than that under policys, since the
resources are related and essential.

In addition, there must exist at least one flow, for which (6)
is not an equality. In other words, there exists at least one flow,
which gets more resources under policys than under policyq.

13

Hence, under policys, as opposed to policyq, no flow gets
less allocation for any resource, and at least one flow is allo-
cated more of some resources. This violates the assumption
that policyq is work-conserving and completes the proof.

APPENDIX II
PROOF OFTHEOREM 2

Without loss of generality, we assume that the flow weights
are normalized in such a way that the smallest of the weights
assigned to a flow is 1.

In the rest of this proof, we will limit our consideration to
the situations where lines 19 and 22 in Fig. 3 are never exe-
cuted, i.e., the deficit counters of any flow are never above the
thresholds. The reason of this assumption is similar to the one
used in the design of Idealized Wireless Fair Queueing (IWFQ),
where fairness in bandwidth cannot be guaranteed if any flow
lags more than the maximum lag allowed by the wireless packet
scheduler [21].

Lemma 2: In an execution of the PPLS strategy, at the end
of each roundk, for any flowi,

1) The following two statements are always satisfied:

0 ≤ PDCi(k) ≤ max
∀i
{maxPDCi}

0 ≤ LDCi(k) ≤ max
∀i
{maxLDCi};

2) At least one of the following statements is always satis-
fied:

0 ≤ PDCi(k) ≤ MP

0 ≤ LDCi(k) ≤ ML

whereMP andML are, respectively, the maximum pro-
cessing cost of a packet and the maximum link cost of a
packet.

Proof: First, it can be readily verified that the deficit coun-
ters can never be negative. The first half of Lemma 2 can be
directly derived from the assumption that lines 19 and 22 are
never executed.

Next we prove the second half of Lemma 2 by contradic-
tion. Assume that both statements are not true, then we have
PDCi(k) > MP andLDCi(k) > ML. Note that at this mo-
ment, flowi still has packets in the queue waiting to be sched-
uled. Otherwise, both deficit counters of flowi should be reset
to 0. Consider the head-of-line packet of flowi, sayp. Ap-
parently its processing cost is no more thanMP and its link
cost is no more thanML. In other words, its processing cost
is less thanPDCi(k) and its link cost is less thanLDCi(k),
and therefore, based on the PPLS algorithm, packetp should be
scheduled in roundk. This violates the assumption that packet
p is the head-of-line packet from flowi at the end of roundk.
This completes the proof.

Lemma 2 readily leads to the following Corollary.
Corollary 1: In an execution of the PPLS strategy, at the

end of each roundk, for any flowi,

max
{

PDCi(k)
RP

,
LDCi(k)

RL

}
≤ α

min
{

PDCi(k)
RP

,
LDCi(k)

RL

}
≤ β

where constantsα andβ are defined as follows:

α = max

{max
∀i

{maxPDCi}
RP

,
max
∀i

{maxLDCi}
RL

}
(7)

β = min
{

MP

RP
,
ML

RL

}
. (8)

According to (5), we also define constantγ as follows,

γ =
min
∀i
{PQi}
RP

=
min
∀i
{LQi}
RL

. (9)

Lemma 3: During an execution of the PPLS strategy over
anym rounds, for any flowi,

mwiγ − β ≤ CRAn
i (m) ≤ mwiγ + α

whereα, β, γ are constants defined in (7), (8) and (9), respec-
tively.

Proof: Denote bySCPAi(k) the cumulative processor al-
location of flowi in a single roundk. From the algorithm we
have,

SCPAi(k) = PQi + PDCi(k − 1)− PDCi(k).

This leads to

CPAi(m) =
m∑

k=1

SCPAi(k)

= mPQi + PDCi(0)− PDCi(m)

and

CPAn
i (m) =

CPAi(m)
RP

= m
PQi

RP
+

PDCi(0)− PDCi(m)
RP

.

From (2) we have,

PQi

RP
=

wi

min
∀j

{wj}
min
∀j

{PQj}
RP

= wiγ

and therefore

CPAn
i (m) = mwiγ +

PDCi(0)− PDCi(m)
RP

.

Since bothPDCi(0) andPDCi(m) are non-negative,

mwiγ − PDCi(m)
RP

≤ CPAn
i (m) ≤ mwiγ +

PDCi(0)
RP

.

Similarly we have

mwiγ − LDCi(m)
RL

≤ CLAn
i (m) ≤ mwiγ +

LDCi(0)
RL

.

14

Applying the above in the definition of normalized cumula-
tive resource allocation leads to the following:

CRAn
i (m) ≤ mwiγ + max

{
PDCi(0)

RP
,
LDCi(0)

RL

}

CRAn
i (m) ≥ mwiγ −min

{
PDCi(m)

RP
,
LDCi(m)

RL

}
.

Applying Corollary 1 into the above inequalities completes the
proof.

Consider a certain time interval[t1, t2), during which all
flows remain backlogged. Consider any pair of flowsi andj.
Assume that during[t1, t2), flow i receivesmi rounds of ser-
vice while flow j receivesmj rounds of service. Since both
flows i andj are backlogged during time interval(t1, t2), and
the scheduler serves the flows in a round-robin fashion, we have
|mi −mj | ≤ 1.

Applying Lemma 3 we have

CRAn
i (t1, t2)
wi

≤ miγ +
α

wi

CRAn
j (t1, t2)
wj

≥ mjγ − β

wj

Therefore,

CRAn
i (t1, t2)
wi

− CRAn
j (t1, t2)
wj

≤ (mi −mj)γ +
α

wi
+

β

wj

≤ α + β + γ.

Similarly we can also derive that,

CRAn
j (t1, t2)
wj

− CRAn
i (t1, t2)
wi

≤ α + β + γ.

Since flowsi andj can be any pair of flows, based on the defi-
nition of the normalized fairness measure we have,

FMn(t1, t2) ≤ α + β + γ.

Note thatα, β and γ are all finite constants. Therefore,
FMn(t1, t2) is bounded by a finite constant over any time in-
terval during which all flows are backlogged, i.e., the fairness
boundFBn exists for the PPLS strategy and it is finite. This
proves the statement of Theorem 2.

